If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-40x=0
a = 32; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·32·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*32}=\frac{0}{64} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*32}=\frac{80}{64} =1+1/4 $
| 8-z*2z+5=0 | | 8x+5(x-2)=16x-28 | | -8x-4(2x-11)=28 | | (82)+(2x-149)+(.5x+7)=180 | | (82)+(2x-149)+(1/2x+7)=180 | | (3x-135)+(.05x+7)=180 | | (3x-135)+(1/2x+7)=180 | | (x-14)+(2x-149)+(1/2x+7)=180 | | 20-4x-2=4x-2x | | 8/11y-1=4/5y-1 | | (6x-13)+(4x)=180 | | (6x-13)+(x)+(3x)=180 | | 108=3x+x | | -2×-8=x+1 | | 2,068÷x=44 | | 374+x=397 | | (x+4)+(4x-39)=90 | | (4n-3)^3=0 | | (4x+5)+(12x+5)=90 | | (4x+5)+(12x+5)=180 | | (4x+5)(12x+5)=180 | | (14x+3)(11x+2)=180 | | X=(3y-10) | | 6n=2n-20 | | 12x-45=6x+27 | | 60z+50-97=-37z+49 | | (n+9)+n(n+3)2n=0 | | -7(y+9)=3y-33 | | x-12=x+44 | | 3^2x-5=81 | | 3=-9x-14x^2 | | -6(8x=2)=-5x-12 |